Draw lines between two points

Nicolas FLASQUE
nicolas.flasque@efrei.fr

Reminder of the situation

A line is defined by two points A and B, of coordinates. $\left(x_{A}, y_{A}\right)$ and $\left(x_{B}, y_{B}\right)$. These coordinates are entire coordinates.

We want to find which pixels make up the line to be drawn between A and B.

Therfore, pixels have entire coordinates: they are points.

A line is therefore a set of points.

The line between A and B being the same as that between B and A, we therefore choose that $x_{A} \leq x_{B}$

We calculate $d x=x_{B}-x_{A}$ and $d y=y_{B}-y_{A}$. We have $d x>=0$

We will try to find out how many straight segments (imagine this as stair steps) we must draw to materialize the line from A to B :
We calculate $d \min =\min (d x,|d y|)$ and $d \max =\max (d x,|d y|)$
$d m i n$ is the smallest difference between coordinates, dmax is the largest difference between coordinates.

Our example

In an orientated landmark, where y is increasing from top to bottom of the image:

$$
\begin{aligned}
& d x=x_{B}-x_{A}=13-3=10 \\
& d y=y_{B}-y_{A}=5-9=-4
\end{aligned}
$$

$$
\begin{aligned}
& d \min =\min (d x,|d y|)=\min (10,4) \\
& =4 \\
& d \max =\max (d x,|d y|)=\max (10,4) \\
& =10
\end{aligned}
$$

The number of segments to 'draw' is then $(d \min +1)$
For example, if $d \min$ is 0 , then a single segment must be drawn that connects the two points, which are aligned horizontally or vertically.
An entire variable is used for this purpose: $n b _$_segs $=(d \min +1)$

How many dots (pixels) in each segment?
The idea is to distribute in a balanced way, the number of points: there are at least : $(d \max +1) /(d \min +1)$

Our example

											$x_{B}=$	13	y_{B})	
	$\boldsymbol{A}(\boldsymbol{x}$	$x_{A}=$	3, y	$y_{A}=$	9)										
			\square					,					1		

Of which the total length is
$d \max +1=10+1=11$

First part: calculate the 'base' segment size:
It is given to us by: $(d \max +1) /(d \min +1)$
$d m a x$ and being integers, in C , it is an integer division, so we get $d m i n$ an integer, which is the 'base' size of each segment.
In our example, we calculate 11 / 5 : the total size divided by the number of segments:11/5=2 (integer division)

We will then get 5 segments with size 2 (pixels) as the base of our line so we create an array segments with nb_segs elements, and we initialize all its elements with the basic size: here, an array with 5 elements, each element worth 2

We then try to distribute the missing pixels on the segments:

So we still have remaining $=(\boldsymbol{d m a x}+1) \%(\boldsymbol{d m i n}+1)$

On our example:remaining =11\% $\mathbf{5} \mathbf{= 1} \mathbf{1}$ pixel to distribute. Which segment will receive this pixel?

To do this, we calculate the sum of the leftovers: we create a table that indicates how many pixels we must add to each segment (this table will contain 0 and 1)

Pixels to be distributed (continued): This code calculates the number of pixels remaining and updates the table of segments.
We assume we have the segments segments

```
int *cumuls = (int *)malloc(nb_segs*sizeof(int));
cumuls[0]=0;
for (int i = 1; i < nb_segs;i++)
{
    cumulated[i] = ((i*remaining)%(dmin+1) < (i-1)*remaining)%(dmin+1);
    segments[i] = segments[i]+cumuls[i];
}
```

We now know the segments connecting A to B and their size.

For the plot: we start from the coordinates of point A and we trace segment by segment: we must know if they are horizontal or vertical
You need to know if you are tracing 'upward' or 'downward'

Si dy <0
we trace down
Si $d x>|d y|$
the segments are horizontal (they are covered by increasing x)
otherwise
the segments are vertical (they are covered by decreasing y)
Otherwise
we trace upwards

If dy < $0 / /$ we trace down
Si $d x>|d y|$
the segments are horizontal (they are covered by increasing x) with each change of segment, we decrease y

Otherwise
the segments are vertical (they are covered by decreasing y) with each change of segment, we increase x
Otherwise// we trace up
Si $d x>d y$
the segments are horizontal (they are covered by increasing x) with each change of segment, we increase y
Otherwise
the segments are vertical (they are covered by increasing y) with each change of segment, we increase x

illustration

Segments: [2.2.2.2.3]
$d x=10, d y=-4$
$d x>|d y|$ so horizontal segments

Finally, to trace the segments:
We use a double loop:

The starting point is A
For i from 0 to nb_segs-1
for j from 0 to segments[i]
Add to the pixel table the pixel coordinates (so increase or decrease x or y) according to the situation described in slide 11.
move to the next segment (so increase or decrease x or y)

