
Draw lines between two
points

Nicolas FLASQUE
nicolas.flasque@efrei.fr

mailto:nicolas.flasque@efrei.fr

Reminder of the situation

A line is defined by two points 𝐴 and 𝐵, of coordinates .
𝑥!, 𝑦! and 𝑥" , 𝑦" . These coordinates are entire coordinates.

We want to find which pixels make up the line to be drawn between A
and B.

Therfore, pixels have entire coordinates: they are points.

A line is therefore a set of points.

The line between A and B being the same as that between B and A, we
therefore choose that 𝒙𝑨 ≤ 𝒙𝑩

We calculate 𝑑𝑥 = 𝑥# – 𝑥$ and 𝑑𝑦 = 𝑦# – 𝑦$. We have 𝑑𝑥 >= 0

We will try to find out how many straight segments (imagine this as stair
steps) we must draw to materialize the line from A to B:
We calculate 𝑑𝑚𝑖𝑛 = min(𝑑𝑥, |𝑑𝑦|) and 𝑑𝑚𝑎𝑥 = max(𝑑𝑥, |𝑑𝑦|)

𝑑𝑚𝑖𝑛 is the smallest difference between coordinates, 𝑑𝑚𝑎𝑥 is the largest
difference between coordinates.

Our example

𝑨(𝒙𝑨 = 𝟑, 𝒚𝑨 = 𝟗)

B(𝒙𝑩 = 𝟏𝟑, 𝒚𝑩 = 𝟓)

𝑥

𝑦

In an orientated landmark, where y is
increasing from top to bottom of the
image:

𝑑𝑥 = 𝑥! − 𝑥" = 13 − 3 = 10
𝑑𝑦 = 𝑦! − 𝑦" = 5 − 9 = −4

𝑑𝑚𝑖𝑛 = min(𝑑𝑥, |𝑑𝑦|) = min(10,4)
= 4
𝑑𝑚𝑎𝑥 = max(𝑑𝑥, |𝑑𝑦|) = max(10,4)
= 10

The number of segments to 'draw' is then (𝑑𝑚𝑖𝑛 + 1)
For example, if 𝑑𝑚𝑖𝑛 is 0, then a single segment must be drawn that
connects the two points, which are aligned horizontally or vertically.
An entire variable is used for this purpose: 𝑛𝑏_𝑠𝑒𝑔𝑠 = (𝑑𝑚𝑖𝑛 + 1)

How many dots (pixels) in each segment?
The idea is to distribute in a balanced way, the number of points: there
are at least : (𝑑𝑚𝑎𝑥 + 1)/(𝑑𝑚𝑖𝑛 + 1)

Our example

𝑨(𝒙𝑨 = 𝟑, 𝒚𝑨 = 𝟗)

B(𝒙𝑩 = 𝟏𝟑, 𝒚𝑩 = 𝟓)

𝑥

𝑦

𝑑𝑚𝑖𝑛 = 4
𝑑𝑚𝑎𝑥 = 10

I have to trace 𝑑𝑚𝑖𝑛 + 1 = 4 + 1 = 5
segments

Of which the total length is
𝑑𝑚𝑎𝑥 + 1 = 10 + 1 = 11

First part: calculate the 'base' segment size:
It is given to us by: (𝑑𝑚𝑎𝑥 + 1)/(𝑑𝑚𝑖𝑛 + 1)
𝑑𝑚𝑎𝑥 and being integers, in C, it is an integer division, so we get
𝑑𝑚𝑖𝑛 an integer, which is the 'base' size of each segment.
In our example, we calculate 11 / 5 : the total size divided by the
number of segments:11 / 5 = 2 (integer division)

We will then get 5 segments with size 2 (𝑝𝑖𝑥𝑒𝑙𝑠) as the base of our line
so we create an array 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 with 𝑛𝑏_𝑠𝑒𝑔𝑠 elements, and we
initialize all its elements with the basic size: here, an array with 5
elements, each element worth 2

We then try to distribute the missing pixels on the segments:

So we still have 𝐫𝐞𝐦𝐚𝐢𝐧𝐢𝐧𝐠 = (𝒅𝒎𝒂𝒙 + 𝟏)%(𝒅𝒎𝒊𝒏 + 𝟏)

On our example:𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 = 11 % 5 = 1 pixel to distribute. Which
segment will receive this pixel?

To do this, we calculate the sum of the leftovers: we create a table that
indicates how many pixels we must add to each segment (this table will
contain 0 and 1)

Pixels to be distributed (continued): This code calculates the number of pixels
remaining and updates the table of segments.
We assume we have the segments segments

int *cumuls = (int *)malloc(nb_segs*sizeof(int));

cumuls[0]=0;

for (int i = 1; i < nb_segs;i++)

{

cumulated[i] = ((i*remaining)%(dmin+1) < (i-1)*remaining)%(dmin+1);

segments[i] = segments[i]+cumuls[i];

}

We now know the segments connecting A to B and their size.

For the plot: we start from the coordinates of point A and we trace segment by
segment: we must know if they are horizontal or vertical
You need to know if you are tracing ‘upward' or 'downward'

Si dy < 0
we trace down

Si dx > |dy|
the segments are horizontal (they are covered by increasing x)

otherwise
the segments are vertical (they are covered by decreasing y)

Otherwise
we trace upwards

If dy < 0// we trace down
Si dx > |dy|

the segments are horizontal (they are covered by increasing x)
with each change of segment, we decrease y

Otherwise
the segments are vertical (they are covered by decreasing y)
with each change of segment, we increase x

Otherwise// we trace up
Si dx > dy

the segments are horizontal (they are covered by increasing x)
with each change of segment, we increase y

Otherwise
the segments are vertical (they are covered by increasing y)
with each change of segment, we increase x

illustration

𝑨(𝒙𝑨 = 𝟑, 𝒚𝑨 = 𝟗)

B(𝒙𝑩 = 𝟏𝟑, 𝒚𝑩 = 𝟓)

𝑥

𝑦

Segments: [2.2.2.2.3]

dx = 10, dy= -4

dx > |dy| so horizontal segments

Finally, to trace the segments:

We use a double loop:

The starting point is A

For i from 0 to nb_segs-1
for j from 0 to segments[i]

Add to the pixel table the pixel coordinates (so increase or decrease x or y)
according to the situation described in slide 11.

move to the next segment (so increase or decrease x or y)

