Gestion d’un systéme de bases de données

Halim Djerroud

C
n
<
-
3

Laboratoire d’ingénierie

L]
des systémes de Versailles universite paris-sacLAY

révision : 0.1

Plan du cours

@ Infroduction et contexte professionnel
@ Rappels sur les bases de données

© Le SGBD comme service réseau

© Panorama des SGBD du marché

© Architecture client-serveur

© Composants réseau et protocoles

@ Besoins en ressources

LISV UVsQE

2/101

Introduction
©0000000000000

Infroduction

Gestion d’un systéme de bases de données |

Objectifs du chapitre :
@ Comprendre le réle d'un SGBD dans I'infrastructure réseau
@ Identifier les principaux SGBD du marché

@ Maitriser I’architecture client-serveur d’un SGBD

LISV UVsSQ®

3/101

Introduction
0@000000000000

Contexte professionnel

@ Le professionnel RT peut étre amené & installer et administrer un SGBD.

@ Le SGBD = un service réseau a part entiére :

o & l'instar d’un serveur web, DNS ou DHCP,
@ nécessite une intégration dans I'infrastructure réseau,
o doit respecter les contraintes de sécurité et de disponibilité.

@ Missions principales :
o Installation et configuration,
o Gestion des comptes et des droits d’accés,
@ Sécurisation des données et des connexions,
@ Sauvegarde et restauration.

LISV UVsQ®

4/101

Introduction
00®00000000000

Rappels : Qu’est-ce qu’une base de données ?

@ Définition : collection organisée de données structurées, stockées électroniquement.

@ Modéle relationnel : données organisées en tables (relations).
@ Composants principaux :

Tables (relations),

Colonnes (attributs),

Lignes (tuples),

Clés primaires et étrangeéres,
Contraintes d’intégrité.

@ Langage SQL : interface standardisée pour interroger et manipuler les données.

LISV UVsQE

5/101

Introduction
000@0000000000

Fichiers plats vs SGBD

Fichiers plats : SGBD :
— Redondance des données + Elimination de la redondance
— Risques d’incohérences + Intégrité des données
— Acceés concurrent difficile + Gestion de la concurrence
— Sécurité limitée + Sécurité avancée
— Pas de gestion transactionnelle + Transactions ACID

LISV UVsQE

6/101

Introduction
0000@000000000

Le SGBD comme service réseau

@ Architecture client-serveur :

@ Serveur SGBD : gére les données, traite les requétes,
o Clients : applications, utilisateurs, services web.

@ Avantages :

@ Accés simultané par plusieurs utilisateurs/applications,
@ Cenfralisation des données,

@ Gestion centralisée de la sécurité,

e Partage de ressources.

@ Communication réseau : protocoles spécifiques sur ports dédiés.

LISV UVsQ®

7/101

Introduction
00000800000000

Architecture réseau a 3 niveaux

@ Niveau 1 - Présentation :

e Interface utilisateur (navigateur web, application cliente),
o Affichage et interaction.

@ Niveau 2 - Application :

@ Serveur web/applicatif,
@ Logique métier, traitement des requétes.

@ Niveau 3 - Données :

e Serveur SGBD,
@ Stockage et gestion des données.

Positionnement sécurisé

Le SGBD est placé dans un segment réseau protégé (DMZ interne, VLAN dédié).

8/101

Introduction
00000080000000

Panorama des SGBD relationnels

o MySaQl / MariaDB :
@ Open source (GPL), trés populaire pour le web,
@ MariaDB = fork communautaire de MySQL,
e Port par défaut : 3306.
@ PostgreSQl :
@ Open source, SGBD objet-relationnel,
o Conformité SQL stricte, extensible,
e Port par défaut : 5432.
@ Oracle Database :
e Commercial, grandes entreprises,
o Port par défaut : 1521,
@ Microsoft SQL Server :

o Commercial, écosystéme Windows/.NET,

4]
o Port par défaut : 1433. qalabo LISV

Introduction
00000008000000

MySQL / MariaDB

Caractéristiques :

@ SGBD le plus populaire (web)

@ Open source (GPL)

@ Performant en lecture

o Ecosys’réme riche (phpMyAdmin)
Cas d’'usage :

@ Applications web

@ PME/startups

@ Prototypage rapide

Points forts :
+ Simplicité
+ Communauté
+ Documentation
Limites :
— Fonctionnalités avancées
limitées

— Conformité SQL partielle

LISV UVsQ®

10/101

Introduction
0000000000000

PostgreSQL

Caractéristiques :

@ SGBD objet-relationnel

@ Licence PostgreSQL (libre)

@ Conformité SQL stricte

@ Extensible (plugins, types personnalisés)
Cas d’'usage :

@ Applications d’entreprise

@ Données géospatiales (PostGIS)

@ Finance, scientifique

Points forts :

+ Robustesse

+ Standards SQL

+ Fonctionnalités avancées
Limites :

— Courbe d’apprentissage

— Configuration plus complexe

LISV UVsQE

11/101

Introduction
000000000e0000

Architecture client-serveur d’'un SGBD

@ Serveur SGBD :

@ Processus daemon (mysqld, postgres).
e Ecoute surun port réseau,

@ Gére les connexions enfrantes,

o Traite les requétes SQL,

@ Geére les fransactions et la concurrence.

@ Clients :
@ Outils CLI : mysql, psql,

e Inferfaces graphiques : phpMyAdmin, pgAdmin,

e Applications web/métier,
@ Connecteurs/drivers : PHP, Python, Java, etc.

LISV UVS

12/101

CL!C‘!

Introduction
0000000000e000

Protocoles et ports réseau

@ Protocole de transport : TCP (connexion fiable).
@ Ports par défaut :
MySQL/MariaDB : 3306/tcp,
PostgreSQlL : 5432/tcp.
Oracle : 1521/tcp.
o SQL Server : 1433/tcp.
@ Configuration réseau :
o Définir les interfaces d’écoute (localhost, IP publique),
o Configurer le pare-feu (ouverture des ports),
@ Sécuriser avec SSL/TLS pour les connexions distantes.

LISV UVsQE

13/101

Introduction
0000000000080

Besoins en ressources

e CPU:
o Traitement des requétes complexes,
@ Gestion de la concurrence.

e RAM:

@ Cache des données (buffer pool),

@ Requétes en cours,

@ Recommandation : 2 Go minimum, 8 Go+ pour production.
@ Stockage :

o Données, index, logs,

o |/O intensif : privilégier SSD,

e Planifier la croissance (dimensionnement).
@ Réseau:

@ Bande passante suffisante,

4]
o Latence faible pour les applications critiques. LISV S

14/101

Introduction
000000000000e0

Contraintes et bonnes pratiques

@ Disponibilité :
e Service critique : prévoir la haute disponibilité,
o Réplication, clustering.
@ Sécurité :
@ Principe du moindre privilege,
e Chiffrement des connexions (SSL/TLS),
o Isolation réseau (VLAN, pare-feu).

@ Performance :
o Optimisation des requétes,
@ Indexation appropriée,
@ Monitoring régulier.

@ Sauvegarde :

e Stratégie de sauvegarde réguliere,
o Tests de restauration.

LISV UvsQm

15/101

Introduction
0000000000000e

Récapitulatif

Le SGBD est un service réseau essentiel de I'infrastructure IT.

Il permet un accés centralisé, sécurisé et concurrent aux données.

Choix du SGBD selon les besoins : MySQL/MariaDB, PostgreSQL, Oracle, SQL Server.
Architecture client-serveur avec communication sur ports dédiés.

Nécessite une planification des ressources (CPU, RAM, stockage, réseau).

La sécurité et la disponibilité sont des priorités absolues.

Prochaine séance
TP : Installation et configuration d’un SGBD sur Linux

LISV UVsQE

16/101

Installation
©000000000000000000000000

Chapitre 2

Installation et configuration d’un SGBD J

Objectifs du chapitre :
@ Installer un SGBD sur un serveur Linux
@ Configurer les paramétres de base
@ Sécuriser I'acceés réseau

@ Maitriser les outils d’administration

LISV UVsSQ®

17/101

Installation
0®00000000000000000000000

Choix du systéme d’exploitation

@ Linux : plateforme privilégiée pour les SGBD

o Stabilité, performance, sécurité,
o Distributions courantes : Debian, Ubuntu, Rocky Linux, RHEL.

@ Windows Server :
o Utilisé principalement pour SQL Server,
e Interface graphique facilitée.
@ Notre choix : Linux (Debian/Ubuntu)
e Open source, gratuit,
@ Largement déployé en production,
@ Documentation abondante.

LISV UvsQm

18/101

Installation
00®0000000000000000000000

Préparation du systéme

@ Mise d jour du systéme :

sudo apt update
sudo apt upgrade -y

@ Vérification de I'espace disque :
df -h
@ Configuration du hostname :

sudo hostnamectl set-hostname sgbd-server

LISV UVsQE

19/101

Installation
000@000000000000000000000

Installation de MariaDB

@ Installation via le gestionnaire de paquets :

sudo apt install mariadb-server mariadb-client -y
@ Vaérification de I'installation :

mysqgl —--version
@ Vérification du service :

sudo systemctl status mariadb

LISV UVsQE

20/101

Installation
0000@00000000000000000000

Installation de PostgreSQL

@ Installation via le gestionnaire de paquets :

sudo apt install postgresqgl postgresgl-contrib -y
@ Vaérification de I'installation :

psgl —--version
@ Vérification du service :

sudo systemctl status postgresqgl

LISV UVsQE

21/101

Installation
00000@0000000000000000000

Gestion du service

@ Démarrer le service :

sudo systemctl start mariadb
sudo systemctl start postgresqgl

@ Arréter le service :

sudo systemctl stop mariadb
sudo systemctl stop postgresqgl

@ Redémarrer le service :

sudo systemctl restart mariadb
sudo systemctl restart postgresqgl LISV UV$1¥

22/101

Installation
0000008000000000000000000

Activation au démarrage

@ Activer le démarrage automatique :

e Le service démarre automatiquement au boot du systeme,
e Essentiel pour un serveur de production

sudo systemctl enable mariadb
sudo systemctl enable postgresqgl

@ Vérifier I'activation :

sudo systemctl is—-enabled mariadb
sudo systemctl is—enabled postgresqgl

LISV UVsQE

23/101

Installation
0000000800000000000000000

Sécurisation initiale - MariaDB

@ Script de sécurisation : mysqgl_secure_installation
sudo mysgl_secure_installation

@ Actions réalisées :

o Définir un mot de passe root,

@ Supprimer les utilisateurs anonymes,
Désactiver la connexion root & distance,
Supprimer la base de données test,
Recharger les privileges.

LISV UVsQ®

24/101

Installation
0000000080000000000000000

Sécurisation initiale - Recommandations

@ Mot de passe root :

@ Complexe (majuscules, minuscules, chiffres, symboles),
@ Minimum 12 caractéres,
@ Conservé dans un gestionnaire de mots de passe sécurisé.

@ Utilisateurs anonymes : toujours supprimer.
@ Connexion root a distance : désactiver (sécurité).

@ Base test : supprimer (inutile en production).

Principe de sécurité

Appliquer le principe du moindre privilege dés I'installation.

LISV UVsQE

25/101

Installation
0000000008000000000000000

Fichiers de configuration - MariaDB

@ Fichier principal : /etc/mysqgl/mariadb.conf.d/50-server.cnf
@ Paramétres importants :

@ bind-address : adresse d’écoute du serveur (127 .0.0. 1 : acceés local uniquement,
0.0.0.0 : accesréseau),

e port : port d’écoute (3306 par défaut),

e datadir : répertoire des données,

@ log_error : fichier de log des erreurs,

@ max_connections : nombre maximum de connexions simultanées.

@ Fichiers de logs :

e /var/log/mysql/error.log : erreurs,
e /var/log/mysqgl/mysgl.log : requétes (si activé).

LISV UvsQm

26/101

Installation
0000000000800000000000000

Fichiers de configuration - PostgreSQL

@ Répertoire de configuration : /etc/postgresql/(version)/main/
@ Fichiers principaux :
@ postgresqgl.conf : configuration générale,

@ pg_hba.conf : contréle d’accés (Host-Based Authentication),
@ pg_ident.conf : mapping des ufilisateurs systéme.

@ Répertoire des données : /var/lib/postgresgl/(version)/main/

@ Fichiers de logs : /var/log/postgresal/

LISV UVsQE

27/101

Installation
00000000000e0000000000000

Configuration réseau - MariaDB

@ Par défaut : écoute uniguement sur localhost (127.0.0.1)

o Editer le fichier de configuration :
sudo nano /etc/mysgl/mariadb.conf.d/50-server.cnf

@ Modifier bind-address :

@ 127.0.0.1 : acceés local uniquement,
o 0.0.0.0: écoute sur toutes les interfaces,
o |P spécifique : écoute sur une interface donnée

bind-address = 0.0.0.0

LISV UVsQE

28/101

Installation
0000000000008000000000000

Configuration réseau - PostgreSQL

o Editer postgresql.conf :

sudo nano /etc/postgresgl/15/main/postgresql.conf

@ Modifier listen_addresses :

listen_addresses = 'x' # écoute sur toutes les interfaces
ou
listen_addresses = '192.168.1.10"'" # IP spécifique

@ Port d’écoute (par défaut 5432) :

port = 5432
LISV UVsQ®

29/101

Installation

000000000000 0e00000000000

Configuration du pare-feu

@ Ouverture du port pour MariaDB :

sudo ufw allow 3306/tcp

@ Ouverture du port pour PostgreSQl :
sudo ufw allow 5432/tcp
@ Vérification des régles :

sudo ufw status

Sécurité avancée

Limiter I'accés & des adresses IP spécifiques :
sudo ufw allow from 192.168.1.0/24 to any port 3306

30/101

Installation
00000000000000e0000000000

Redémarrage aprés configuration

@ Redémairrer le service pour appliquer les changements :

sudo systemctl restart mariadb
sudo systemctl restart postgresqgl

@ Vérifier que le service écoute bien :

sudo netstat —-tlnp | grep mysqgl
sudo netstat -tlnp | grep postgres

@ Ou avec ss:

sudo ss —-tlnp | grep 3306

sudo ss —-tlnp | grep 5432 LISV UV$1¥

31/101

Installation
000000000000000e000000000

Outils CLI - MariaDB

@ Client mysql : inferface en ligne de commande
mysgl —-u root -p

@ Commandes utiles dans le client :
o SHOW DATABASES:; : lister les bases,
@ USE nom_base; : sélectionner une base,
@ SHOW TABLES: : lister les tables,
e EXIT; ou QUIT; : quitter.

LISV UvsQm

32/101

Installation
0000000000000000e00000000

Outils CLI - PostgreSQL

@ Client psql : inferface en ligne de commande
sudo -u postgres psqgl

@ Commandes utiles (meta-commandes) :
o \I: lister les bases de données,
e \c nom_base : se connecter & une base,
\dt : lister les tables,
\du : lister les utilisateurs,
\q : quitter.

LISV UVsQ®

33/101

Installation
00000000000000000e0000000

Premier test de connexion

@ MariaDB - connexion locale :
mysgl -u root -p

@ PostgreSQL - connexion locale :
sudo -u postgres psqgl

@ Créer une base de données test :

MariaDB
CREATE DATABASE test_db;

PostgreSQL

CREATE DATABASE test_db; LISY

34/101

Installation
0000000000000000008000000

Outils graphiques d’administration

@ phpMyAdmin (pour MySQL/MariaDB) :
e Interface web populaire,
@ Installation sur serveur Apache/Nginx + PHP,
@ Gestion compléte via navigateur.
@ Adminer :
o Alternative légere ad phpMyAdmin,
@ Un seul fichier PHP,
@ Support multi-SGBD.
@ pgAdmin (pour PostgreSQL) :

e Interface graphique officielle,
@ Version desktop ou web,
o Fonctionnalités avancées.

LISV UVsQE

35/101

Installation
0000000000000000000800000

Installation de phpMyAdmin

@ Prérequis : Apache/Nginx + PHP

sudo apt install apache2 php libapache2-mod-php -y
sudo apt install phpmyadmin -y

@ Configuration :

@ Sélectionner le serveur web (apache?2),
e Configurer la base de données pour phpMyAdmin,
o Définir un mot de passe.

@ Accés : hitp ://IP_SERVEUR/phpmyadmin

LISV UVsQE

36/101

Installation
00000000000000000000e80000

Sécurisation de phpMyAdmin

@ Problémes de sécurité :

@ URL connue : /phpmyadmin,
o Cible fréquente d’attaques par force brute,
e Exposition d’informations sensibles.

@ Bonnes pratiques :

@ Changer I'URL d’acceés (alias Apache),
Activer I’authentification HTTP basique,
Restreindre I'accés par IP,

Utiliser HTTPS uniquement,

Désactiver root via phpMyAdmin.

LISV UVsQ®

37/101

Installation
0000000000000000000008000

Parameétres de performance

@ MariaDB - parameétres clés :

@ innodb_buffer_pool_size : cache des données (70% RAM),
@ max_connections : nombre de connexions simultanées,
@ query_cache_size : cache des requétes.
@ PostgreSQL - parameétres clés :
e shared_buffers : mémoire partagée (25% RAM),
@ work_mem : mémoire par opération de tri,
e effective_cache_size : indication du cache OS,
@ max_connections : connexions simultanées.

Adapter les parametres selon les ressources disponibles.

LISVTUVS

38/101

Installation
0000000000000000000000e00

Monitoring et logs

@ Surveillance des logs :
e Erreurs de connexion,
o Requétes lentes,
@ Problémes de performance,
e Tentatives d’infrusion.

@ Outils de monitoring :

@ Commandes systéme : top, htop, iostat,

e SHOW STATUS (MariaDB),

e pg_stat_activity (PostgreSQL),

@ Solutions externes : Prometheus, Grafana, Zabbix.

LISV UvsQm

39/101

Installation
00000000000000000000000e0

Vérification de I'installation

@ Liste de vérification :

Service démairré et activé au boot,
Ecoute sur le port configuré,
Pare-feu configuré,
Connexion locale fonctionnelle,
Logs accessibles et surveillés,
Sécurisation initiale effectuée.

SENENENENEN

Test complet

sudo systemctl status mariadb

sudo ss —-tlnp | grep 3306

mysgl —-u root -p —-e "SHOW DATABASES;"

LISV UVsQE

40/101

Installation
000000000000000000000000e

Récapitulatif

Installation simple via gestionnaire de paquets (apt).
Configuration réseau : bind-address, listen_addresses, ports.
Sécurisation initiale indispensable (mysqgl_secure_installation).
Gestion du service avec systemd (start, stop, enable).
Configuration du pare-feu pour autoriser les connexions.
Outils CLI : mysql, psql.

Outils graphiques : phpMyAdmin, pgAdmin (& sécuriser).

Surveillance des logs et monitoring essentiels.

Prochaine séance
Gestion des utilisateurs et des droits d’accés

eE EYSNBTGE da Varealle:

41/101

Gestion utilisateurs
©00000000000000000000000000

Chapitre 3

Gestion des utilisateurs et des droits J

Objectifs du chapitre :
@ Créer et gérer des comptes ufilisateurs
@ Comprendre et appliquer les différents types de privileéges
@ Metire en ceuvre le principe du moindre privilege

@ Gérer I'accés a l'interface d’administration

LISV UVsQE

42/101

Gestion utilisateurs
0®0000000000000000000000000

Architecture des utilisateurs

@ Distinction importante :
o Utilisateurs systéme (Linux) : acceés au systéme d’exploitation,
o Utilisateurs SGBD : accés aux bases de données.

o Utilisateurs SGBD :

@ Indépendants du systeme d’exploitation,

@ Gérés entierement par le SGBD,

o Identifiés par nom d’utilisateur + héte (MariaDB),
o |dentifiés par nom + réle (PostgreSQL).

@ Format d’identification MariaDB :
o ‘utilisateur’@'héte’,
e Exemple : ‘jean’@’localhost’, ‘admin’@°192.168.1.

LISV UvsQm

43/101

Gestion utilisateurs
00®000000000000000000000000

Principe du moindre privilege

Définition

Chaque utilisateur ne doit disposer que des privileges strictement nécessaires &
I’accomplissement de ses taches.

@ Avantages :
e Limitation des dégdts en cas de compromission,
@ Réduction des erreurs de manipulation,
e Tracabilité des actions,
@ Conformité aux normes de sécurité.

@ Exemples :

o Application web : SELECT, INSERT, UPDATE, DELETE uniquement,
@ Développeur : accés a la base de développement uniquement, UvVsQ®
@ Administrateur : tous les priviléges sur toutes les bases. LISV

44/101

Gestion utilisateurs
000@00000000000000000000000

Types de privileges - Vue d’ensemble

Privileges globaux :

o S’appliquent & toutes les bases de données,
e Exemples : CREATE USER, RELOAD, SHUTDOWN.

Privileges de base de données :

e S’appliquent & une base spécifique,
o Exemples : CREATE, DROP, ALTER.

Privileges de table :

e S’appliquent & une table spécifique,
@ Exemples : SELECT, INSERT, UPDATE, DELETE.

Priviléges de colonne :

o S’appliquent & des colonnes spécifiques,
@ Plus rarement utilisés.

LISV UvsQm

45/101

Gestion utilisateurs
000080000000000000000000000

Privileges courants - MariaDB/MySQL

Données (DML) :

@ SELECT : lire les données

Administration :

GRANT OPTION : déléguer privileges
RELOAD : recharger config
SHUTDOWN : arréter serveur
PROCESS : voir processus

@ INSERT : agjouter des données

@ UPDATE : modifier les données

@ DELETE : supprimer des données
Structure (DDL) :

@ CREATE : créer objets

@ ALTER : modifier objets

FILE : lire/écrire fichiers

SUPER : opérations admin
Privilege spécial :

@ DROP : supprimer objets
@ ALL PRIVILEGES : tous les droits

@ INDEX : gérer les index
LISV UVvsQ®

46/101

Gestion utilisateurs
00000@000000000000000000000

Création d’utilisateurs - MariaDB

@ Syntaxe de base :

CREATE USER 'nom_utilisateur'@'hote'
IDENTIFIED BY 'mot_de_passe';

@ Exemples :

—— Utilisateur local uniquement

CREATE USER 'appweb'@'localhost'

IDENTIFIED BY 'MotDePassel23!';

—— Utilisateur depuis un réseau

CREATE USER 'admin'@'192.168.1.%'

IDENTIFIED BY 'SecurePass456!"';

—-— Utilisateur depuis n'importe ou (déconseillé)
CREATE USER 'dev'@'$%' LISV UVsQ®
IDENTIFIED BY 'DevPass789!";

47/101

Gestion utilisateurs
000000800000000000000000000

Création d’utilisateurs - PostgreSQL

@ Syntaxe de base :

CREATE USER nom_utilisateur
WITH PASSWORD 'mot_de_passe';

@ Exemples avec options :

—— Utilisateur simple

CREATE USER appweb WITH PASSWORD 'Passl23!';
—-— Utilisateur avec droit de création de base
CREATE USER dev WITH PASSWORD 'DevPass!'
CREATEDBR;

—-— Utilisateur avec capacités de superuser
CREATE USER admin WITH PASSWORD 'AdminPass!'

SUPERUSER;
—— Utilisateur avec limite de connexions
CREATE USER readonly WITH PASSWORD 'ReadPass!' __LIsv uvsQ®e

CONNECTION LIMIT 5; 48/101

Gestion utilisateurs
000000080000000000000000000

Aftribution de privileges - MariaDB

@ Syniaxe GRANT :

GRANT privileges ON base.table
TO 'utilisateur'@'hote';

@ Exemples :

—-— Tous les droits sur une base
GRANT ALL PRIVILEGES ON mabase.x*
TO 'appweb'@'localhost';

—-— SELECT uniquement sur une table
GRANT SELECT ON mabase.clients

TO 'readonly'@'localhost';

—-— Plusieurs privileges

GRANT SELECT, INSERT, UPDATE ON mabase.produits LISV UvsQE
TO 'appweb'@'localhost'; ’ -

49/101

Gestion utilisateurs
000000008000000000000000000

Attribution de privileges - PostgreSQL

@ Attribution sur une base de données :

GRANT CONNECT ON DATABASE mabase TO appweb;
GRANT ALL PRIVILEGES ON DATABASE mabase TO admin;

@ Attribution sur des tables :

—— Se connecter d'abord a la base

\c mabase

—-— Privileges sur une table

GRANT SELECT ON clients TO readonly;
GRANT SELECT, INSERT, UPDATE, DELETE
ON produits TO appweb;

—-— Privileges sur toutes les tables d'un schéma
GRANT ALL PRIVILEGES ON ALL TABLES LISV UVSQ=
IN SCHEMA public TO admin;

50/101

Gestion utilisateurs
000000000800000000000000000

Appliquer les changements - MariaDB

@ Recharger les priviléges :

FLUSH PRIVILEGES;

Aprés avoir modifié directement les tables de privileges (mysgl.user, mysgl.db, etc.), il est
nécessaire d’exécuter FLUSH PRIVILEGES.
Ce n’est pas nécessaire aprés GRANT ou REVOKE.

LISV UVsSQ®

51/101

Gestion utilisateurs
000000000080000000000000000

Consultation des utilisateurs

MariaDB : PostgreSQlL :

—— Lister les utilisateurs

—— Lister les utilisateurs
\du

SELECT User, Host

FROM mysqgl.user; —~ ou en SOL

SELECT usename

—-— Voir les privileges
FROM pg_user;

—— d'un utilisateur
SHOW GRANTS FOR

-— Priviléges sur tables
'appweb'@'localhost'; ivileg u

\dp nom_table

—— Utilisateur actuel

-— Utilisateur actuel
SELECT USER() ;

SELECT current_user; LISV UV?I?

52/101

Gestion utilisateurs
00000000000e000000000000000

Révocation de privileges - MariaDB

@ Syniaxe REVOKE :

REVOKE privileges ON base.table
FROM 'utilisateur'@'hote';

@ Exemples :

—-— Retirer un privilege spécifique
REVOKE DELETE ON mabase.x
FROM 'appweb'@'localhost';

—-— Retirer tous les privileges

REVOKE ALL PRIVILEGES ON mabase.x

FROM 'appweb'@'localhost';

—-— Retirer le droit de déléguer (GRANT OPTION)
REVOKE GRANT OPTION ON mabase.x LISV UVsQ®
FROM 'admin'@'localhost'; ’ - SRS

53/101

Gestion utilisateurs
000000000000800000000000000

Révocation de priviléges - PostgreSQL

@ Syntaxe REVOKE :

REVOKE privileges ON base FROM utilisateur;

@ Exemples :

—— Retirer des privileges sur une table
REVOKE INSERT, UPDATE ON clients FROM appweb;

—-— Retirer tous les privileges sur une base
REVOKE ALL PRIVILEGES ON DATABASE mabase
FROM appweb;

—-— Retirer tous les privileges sur toutes les tables
REVOKE ALL PRIVILEGES ON ALL TABLES LISV UvsQ®
IN SCHEMA public FROM appweb; pli

54/101

Gestion utilisateurs
0000000000000e0000000000000

Modification d’utilisateurs

Post L:
MariaDB : ostgresQ

—— Changer le mot de passe
ALTER USER appweb

WITH PASSWORD
'NewPassl1l23!"';

—— Changer le mot de passe
ALTER USER
"appweb'@'localhost'
IDENTIFIED BY

'NewPassl123!"';
—— Renommer

ALTER USER oldname

—— Renommer
RENAME TO newname;

RENAME USER
'oldname'@'localhost'
TO
'newname'@'localhost';

—-— Modifier attributs
ALTER USER appweb
CREATEDB; LISV UVsQ8

55/101

Gestion utilisateurs
000000000000008000000000000

Suppression d’utilisateurs

. PostgreSQlL :
MariaDB :

DROP USER appweb;
DROP USER

'appweb'@'localhost';
-— ou

DROP ROLE appweb;
—— Plusieurs utilisateurs PP !

DROP USER
'userl'@'localhost',
'user2'@'s’';

—— Supprimer si existe
DROP USER IF EXISTS
appweb;

Supprimer I"utilisateur supprime tous ses) ")
Ne peut pas supprimer un utilisateur qui

rivileges.
P 9 possede des objets.

56/101

Gestion utilisateurs
000000000000000800000000000

Réles dans PostgreSQL

@ Concept de role :

o Dans PostgreSQL, utilisateurs et groupes sont des rdles,
@ Un rdle peut étre membre d’un autre rdle,
e Facilite la gestion des privileges.

@ Avantages :

@ Gestion centralisée des privileéges,
o Réufilisation des configurations,

e Héritage de privileges,

o Simplification de I’administration.

LISV UVsQ®

57/101

Gestion utilisateurs
000000000000000080000000000

Création et utilisation de réles - PostgreSQL

@ Créer un role :

CREATE ROLE lecteur;
CREATE ROLE editeur;

@ Attribuer des priviléges au role :
GRANT SELECT ON ALL TABLES IN SCHEMA public

TO lecteur;

GRANT SELECT, INSERT, UPDATE, DELETE
ON ALL TABLES IN SCHEMA public TO editeur;

@ Assigner un rdle a un utilisateur :

GRANT lecteur TO jean; LISV UVSQ®™
GRANT editeur TO marie;

58/101

Gestion utilisateurs
000000000000000008000000000

Contréle d’acceés host-based - PostgreSQL

@ Fichier pg_hba.conf : conirdle qui peut se connecter

@ Format : type base utilisateur adresse méthode

TYPE
local
host
host
host

DATABASE USER ADDRESS

all postgres

all all 127.0.0.1/32
all all 192.168.1.0/24
mabase appweb 10.0.0.0/8

@ Méthodes d’authentification :

peer : utilisateur systéme = utilisateur PostgreSQL,
md5 : mot de passe hashé MD5,

scram-sha-256 : méthode moderne plus sécurisée,
reject : refuser la connexion.

METHOD

peer

md5

md5
scram-sha-256

LISV UVsQE

59/101

Gestion utilisateurs
000000000000000000800000000

Gestion de I'accés & phpMyAdmin

@ Configuration des utilisateurs autorisés :
o Par défaut, tous les utilisateurs MariaDB peuvent se connecter,
e Possibilité de restreindre via configuration phpMyAdmin.
@ Sécurisation :
e Désactiver I'accés root : Scfg(’Servers’)($) (' AllowRoot") = false ;,
o Authentification HTTP en plus,
@ Restriction par IP,
o Utiliser HTTPS uniguement.
@ Créer un utilisateur dédié pour phpMyAdmin :
o Avec privileges limités,
@ Uniguement depuis localhost,
e Mot de passe fort.
LISV UVvsQ®

60/101

Gestion utilisateurs
000000000000000000080000000

Exemple : Utilisateur pour application web

@ Besoin : Application web nécessitant acces & une base
@ Privileges nécessaires : SELECT, INSERT, UPDATE, DELETE
MariaDB :

CREATE USER 'webapp'@'192.168.1.50"
IDENTIFIED BY 'WebApp2024!';

GRANT SELECT, INSERT, UPDATE, DELETE
ON ecommerce.*x TO 'webapp'@'192.168.1.50";
FLUSH PRIVILEGES;

Analyse

@ Acceés uniqguement depuis le serveur web (192.168.1.50),
@ Pas de privieges DROP, ALTER (sécurité),

@ Base spécifique (ecommerce), pas foutes les bases.

Gestion utilisateurs
000000000000000000008000000

Exemple : Utilisateur en lecture seule

@ Besoin : Reporting, analyses, sans modification
@ Privileges nécessaires : SELECT uniquement
PostgreSQl :

CREATE USER analyste WITH PASSWORD 'Analyst2024!"';
GRANT CONNECT ON DATABASE ventes TO analyste;
\c ventes

GRANT SELECT ON ALL TABLES IN SCHEMA public
TO analyste;

—-— Appliquer aussi aux futures tables -
ALTER DEFAULT PRIVILEGES IN SCHEMA public e HISV
GRANT SELECT ON TABLES TO analyste; 621101

Gestion utilisateurs
000000000000000000000800000

Exemple : Administrateur de base

@ Besoin : Gestion compléte d’une base spécifique
@ Priviléges nécessaires : Tous, sauf super-admin
MariaDB :

CREATE USER 'dbadmin'@'localhost'
IDENTIFIED BY 'DBAdmin2024!"';

GRANT ALL PRIVILEGES ON projet.x
TO 'dbadmin'@'localhost' WITH GRANT OPTION;

FLUSH PRIVILEGES;

WITH GRANT OPTION
Permet & I'utilisateur de déléguer ses privileges & d’autres utilisateurs.

63/101

Gestion utilisateurs
000000000000000000000080000

Audit et tfracabilité

@ Importance de I'audit :
o Tracer les actions des ufilisateurs,
o Détecter les comportements anormaux,
@ Conformité réglementaire (RGPD, etc.),
@ Investigation en cas d’incident.
@ Moyens d’audit :
@ Logs généraux du SGBD,
Logs de requétes lentes,
Plugins d’audit (MariaDB Audit Plugin),
Extensions PostgreSQL (pgAudit),
Analyse réguliére des connexions actives.

LISV UVS

64/101

CL!C‘!

Gestion utilisateurs
00000000000000000000000e000

Surveillance des connexions actives

MariaDB :

-— Liste des processus
SHOW PROCESSLIST;

—— Plus détaillé
SHOW FULL
PROCESSLIST;

—— Tuer une connexion
KILL process_id;

PostgreSQL :

—-— Connexions actives
SELECT x FROM
pg_stat_activity;

—— Tuer une connexion

SELECT

pPg_terminate_backend (
pid

)

LISV UVsQE

65/101

Gestion utilisateurs
000000000000000000000000e00

Bonnes pratiques de gestion des utilisateurs

@ Sécurité :
@ Ne jamais utiliser root/postgres pour les applications,
@ Mots de passe forts et complexes,
@ Rotation réguliére des mots de passe,
e Désactiver les comptes inutilisés.
@ Organisation :
o Nommage cohérent des utilisateurs,
@ Documentation des réles et privileges,
o Utiliser des réles/groupes pour faciliter la gestion,
@ Revue périodique des acces.
@ Principe du moindre privilége :
@ Accorder uniguement les droits nécessaires,

o Privilégier les acceés spécifiques aux bases/tables,
@ Eviter GRANT ALL autant que possible. __LIsv uvsase

66/101

Gestion utilisateurs
0000000000000000000000000e0

Scénarios d’erreurs courantes

@ Erreur "Access denied" :
o Vérifier nom d’utilisateur et mot de passe,
o Vérifier I'héte de connexion (localhost vs IP),
o Vérifier que I'utilisateur existe,
o Vérifier pg_hba.conf (PostgreSQL).
@ Erreur "Permission denied" :
e L'utilisateur n’a pas les privileges nécessaires,
o Vérifier avec SHOW GRANTS ou \dp,
@ Accorder les priviiéges manquants.

@ Impossibilité de supprimer un utilisateur :

e L'utilisateur posséde des objets (PostgreSQL),
@ Réassigner ou supprimer les objets d’abord.

LISV UvsQm

67/101

Gestion utilisateurs
00000000000000000000000000e

Récapitulatif

Distinction entre utilisateurs systéme et utilisateurs SGBD.

Principe du moindre privilege : fondamental pour la sécurité.

Types de privileéges : globaux, base, table, colonne.

Commandes principales : CREATE USER, GRANT, REVOKE, DROP USER.
Format MariaDB : “utilisateur’@’hote’.

PostgreSQL : réles et pg_hba.conf pour conirdle d’acceés.

Sécurisation des interfaces d’administration (ohpMyAdmin, pgAdmin).

Audit et fracabilité : logs, surveillance des connexions.

Bonnes pratiques : mots de passe forts, revue réguliere, documentation.

Prochaine séance

Sécurisation des données et des connexions

OB/ TuT

Sécurisation
©00000000000000000000000000000000

Chapitre 4

Sécurisation des données et des connexions J

Objectifs du chapitre :
@ Comprendre les enjeux de sécurité d’un SGBD
@ Mettre en place le chiffrement SSL/TLS
@ Configurer des acces distants sécurisés

@ Implémenter les bonnes pratiques de sécurité

LISV UVsSQ®

69/101

Sécurisation
0®0000000000000000000000000000000

Enjeux de sécurité

@ Menaces principales :

e Interception des communications (man-in-the-middle),
Aftaques par force brute sur les mots de passe,
Injection SQL,

Accés non autorisés,
Vol ou perte de données,
Déni de service (DoS).

@ Conséquences potentielles :

e Fuite de données sensibles (RGPD),
e Perte de confiance des clients,

@ Sanctions Iégales et financiéres,

e Interruption de service.

LISV UVsQ®

70/101

Sécurisation
00®000000000000000000000000000000

Principes de sécurité

@ Défense en profondeur :
@ Plusieurs couches de sécurité,
o Ne jamais se reposer sur une seule mesure.
@ Principe du moindre privilége :
o Déja abordé au chapitre 3,
e S’applique aussi aux acces réseau.
@ Chiffrement des données :
@ En fransit : SSL/TLS,
@ Au repos : chiffrement du stockage.
@ Isolation réseau :
o VLAN dédiés,
e Segmentation réseau,
o Pare-feu et filtrage. LISV UvsQ®

71/101

Sécurisation
000@00000000000000000000000000000

Architecture réseau sécurisée

@ Placement du SGBD :
o VLAN dédié ou DMZ interne,
e Jamais directement accessible depuis Internet,
e Isolation des environnements (dev, fest, prod).
@ Flux réseau autorisés :
@ Serveur web — SGBD (port 3306 ou 5432),
@ Poste admin — SGBD via VPN ou bastion (jump host),
@ SGBD — Serveur de sauvegarde,
e Tout le reste : bloqué par défaut.
@ Principe du "deny all, allow specific" :
@ Bloquer tout par défaut,
e Autoriser uniguement le nécessaire.

LISV UVsQ®

72/101

Sécurisation
0000@0000000000000000000000000000

Configuration du pare-feu - Régles strictes

@ Autoriser uniquement les sources connues :

MariaDB : acces depuis le serveur web unigquement
sudo ufw allow from 192.168.1.50 to any port 3306

PostgreSQL : accés depuis le réseau admin
sudo ufw allow from 10.0.10.0/24 to any port 5432

Blogquer tout le reste (implicite avec ufw)
sudo ufw default deny incoming
sudo ufw default allow outgoing

Activer le pare-feu
sudo ufw enable LISV RXE%?

73/101

Sécurisation
000008000000000000000000000000000

Vérification de la configuration pare-feu

o Lister les régles actives :
sudo ufw status verbose
@ Résultat attendu :

Status: active

To Action From

3306 ALLOW 192.168.1.50
5432 ALLOW 10.0.10.0/24
22/tcp ALLOW Anywhere

Penser & sécuriser également I'accées SSH au serveur!

Sécurisation
000000800000000000000000000000000

Chiffrement SSL/TLS - Principe

@ Pourquoi chiffrer?
@ Les communications SGBD transitent en clair par défaut,
o Mot de passe et données visibles sur le réseau,
@ Vulnérable aux écoutes (sniffing).

@ SSL/TLS :
@ Protocole de chiffrement des communications,
o Authentification du serveur (certfificat),
o Intégrité et confidentialité des données,
e Standard pour sécuriser les connexions.

@ Composants nécessaires :
o Certificat SSL/TLS du serveur,
o Clé privée du serveur,

Autorité de certification (CA) - optionnelle.
° (©A)-op LISV UVsQ®

75/101

Sécurisation
000000080000000000000000000000000

Génération de certificats SSL - Auto-signés

@ Créer le répertoire pour les certificats :
sudo mkdir -p /etc/mysqgl/ssl
cd /etc/mysgl/ssl

@ Générer la clé privée et le cerlificat :

Clé privée de l'autorité de certification
sudo openssl genrsa 2048 > ca-key.pem

Certificat de l'autorité de certification
sudo openssl req —new -x509 -nodes —-days 3650 \
—-key ca-key.pem -out ca-cert.pem

Clé privée du serveur
sudo openssl req -newkey rsa:2048 -days 3650 \ LISV UvsQE
-nodes -keyout server—-key.pem —-out server—-req.pem - PR

76/101

Sécurisation
00000000@000000000000000000000000

Génération de certificats SSL - Suite

Signer le certificat serveur avec le CA

sudo openssl x509 -reg —-in server-reqg.pem \
-days 3650 —-CA ca-cert.pem -CAkey ca-key.pem \
-set_serial 01 -out server-cert.pem

Clé et certificat client (optionnel)

sudo openssl req -newkey rsa:2048 —-days 3650 \
-nodes -—-keyout client-key.pem -out client-reqg.pem

sudo openssl x509 -reg -in client-reqg.pem \
-days 3650 —-CA ca-cert.pem -CAkey ca-key.pem \
—-set_serial 02 -out client-cert.pem

Pour une production, utiliser des certificats signés par une CA reconnue (Let’s Encrypt,
DigiCert, etc.).

Sécurisation
000000000800000000000000000000000

Configuration SSL - MariaDB

o Editer le fichier de configuration :

sudo nano /etc/mysqgl/mariadb.conf.d/50-server.cnf

@ Ajouter dans la section (mysqld) :

[mysqgld]
ssl-ca=/etc/mysqgl/ssl/ca-cert.pem
ssl-cert=/etc/mysql/ssl/server—cert.pem
ssl-key=/etc/mysql/ssl/server—key.pem

Forcer SSL pour toutes les connexions (optionnel)
require_secure_transport=0N

@ Redémarrer le service :
LISV UV$1¥

sudo systemctl restart mariadb
78/101

Sécurisation
000000000080000000000000000000000

Configuration SSL - PostgreSQL

@ Copier les certificats dans le répertoire de données :

sudo cp /etc/mysgl/ssl/server—cert.pem \
/var/lib/postgresgl/15/main/server.crt

sudo cp /etc/mysqgl/ssl/server-key.pem \
/var/lib/postgresgl/15/main/server.key

sudo chown postgres:postgres \
/var/lib/postgresql/15/main/server. *

sudo chmod 600 /var/lib/postgresqgl/15/main/server.key

o Editer postgresql.conf :
sudo nano /etc/postgresgl/l15/main/postgresgl.conf

ssl = on
ssl_cert_file = 'server.crt' LISV UvsQ®E
ssl_key file = 'server.key' “ ’ .

79/101

Sécurisation
000000000008000000000000000000000

Configuration SSL - PostgreSQL (suite)

@ Modifier pg_hba.conf pour exiger SSL :

sudo nano /etc/postgresql/15/main/pg_hba.conf

TYPE DATABASE USER ADDRESS METHOD

Exiger SSL pour les connexions distantes

hostssl all all 192.168.1.0/24 md5

hostssl all all 0.0.0.0/0 scram-sha-256

Connexion locale sans SSL
local all postgres peer

@ Redémarrer PostgreSQL :

sudo systemctl restart postgresqgl USY UV“Q?

80/101

Sécurisation
000000000000800000000000000000000

Vérification de SSL - MariaDB

@ Se connecter et vérifier SSL :
mysgl -u root -p —--ssl

—-— Dans le client MySQL
SHOW VARIABLES LIKE '%ssl%';

—-— Vérifier la connexion courante
SHOW STATUS LIKE 'Ssl_cipher';

@ Résultat attendu :
e have_ssl: YES,
@ Ssl_cipher : affiche I'algorithme de chiffrement utilisé (ex : TLS_AES_256_GCM_SHA384).
LISV UVsQ®

81/101

Sécurisation
000000000000080000000000000000000

Vérification de SSL - PostgreSQL

@ Se connecter en vérifiant SSL :
psgl "host=localhost user=postgres sslmode=require"

—-— Dans psqgl
\conninfo

@ Résultat attendu :

You are connected to database "postgres" as user

"postgres" on host "localhost" at port "5432".

SSL connection (protocol: TLSv1.3, cipher:
TLS_AES_256_GCM_SHA384, bits: 256)

LISV UV$1¥

82/101

Sécurisation
000000000000008000000000000000000

Forcer SSL pour un utilisateur - MariaDB

@ Créer un utilisateur avec obligation SSL :

CREATE USER 'secure_user'@'%'
IDENTIFIED BY 'SecurePassl23!'
REQUIRE SSL;

@ Modifier un utilisateur existant :

ALTER USER 'appweb'@'192.168.1.50"
REQUIRE SSL;

@ Vérifier les exigences SSL :

SELECT user, host, ssl_type

FROM mysgl.user LISV UvVsQ®
WHERE user='secure_user'; ‘ - R

83/101

Sécurisation
000000000000000800000000000000000

Acceés distant sécurisé via SSH Tunnel

@ Principe du tunnel SSH :

@ Encapsuler la connexion SGBD dans SSH,

o Chiffrement automatique par SSH,

@ Authentification SSH (clé ou mot de passe),

@ Pas besoin de configurer SSL sur le SGBD.
@ Avantages :

o Sécurité éprouvée de SSH,

@ Simple & metire en place,

@ Ne nécessite que le port SSH ouvert,

@ Le SGBD peut rester en écoute locale uniquement.
@ Cas d’usage :

o Administration & distance,

@ Développement depuis un poste externe,
e Accés ponctuel sécurisé. __LIsv uvsase

84/101

Sécurisation
0000000000000000e0000000000000000

Configuration d’un tunnel SSH

@ Configuration du SGBD :

o Laisser bind-address = 127.0.0.1 (écoute locale),
@ Pas besoin d’ouvrir le port SGBD sur le pare-feu.

@ Créer le tunnel depuis le client :
Pour MariaDB :

ssh —-L 3306:1ocalhost:3306 user@serveur—-sgbd.com
Pour PostgreSQl :

ssh —-L 5432:1ocalhost:5432 user@serveur-sgbd.com

Explication

-L port_local :hote_distant :port_distant
Redirige le port local vers le port distant via SSH.

TO7TUT

Sécurisation
000000000000000008000000000000000

Utilisation du tunnel SSH

@ Une fois le tunnel établi, se connecter localement :
MariaDB :

mysgl —-h 127.0.0.1 -P 3306 -u appweb -p
PostgreSQl :

psgl -h 127.0.0.1 -p 5432 -U appweb -d mabase

@ Avec un outil graphique :
o phpMyAdmin : impossible directement,
e MySQL Workbench, DBeaver, pgAdmin : configurer le tunnel SSH dans les parameétres de
connexion.

LISV UVsQE

86/101

Sécurisation
000000000000000000800000000000000

Acceés distant via VPN

@ Principe :

o Créer un réseau privé virtuel,

@ Le client distant fait partie du réseau local,

@ Accés direct au SGBD comme si on était sur place.
@ Solutions VPN :

@ OpenVPN (open source, flexible),

o WireGuard (moderne, performant),

@ IPsec,

@ VPN matériels (Cisco, Fortinet, etc.).

@ Avantages :

@ Sécurise tout le trafic réseau,
@ |déal pour accés multiples (pas que SGBD),
e Intégration transparente.

° P LISV UVsQ®

87/101

Sécurisation
000000000000000000080000000000000

Protection contre les injections SQL

Injection SQL : attaque exploitant une mauvaise validation des entrées

Exemple vulnérable (PHP) :
e Squery = "SELECT * FROM users WHERE id="$id"";,
e SiSid="1 OR 1=1", retourne tous les utilisateurs !
Mesures de prévention :
o Utiliser des requétes préparées (prepared statements),
o Validation et échappement des entrées,
@ Principe du moindre privileége (pas de DROP, ALTER pour I'appli),
o WAF (Web Application Firewall) en complément.

Responsabilité :

@ Principalement cété développement,

@ Mais I'admin SGBD peut limiter les dégats.
LISV UVsQ®

88/101

Sécurisation
00000000000000000000e000000000000

Requétes préparées - Exemple

Vulnérable : Sécurisé :

Squery = "SELECT « $S*'1'mt = Sconn->prepare (
FROM users SELECT % FROM users
WHERE id=$id"; WHERE id=?"

Sresult =)i

Sstmt->bind_param

mysqli_query(nim $id
r

Sconn, S$query

)
) Sstmt—->execute () ;

Requéte préparée

Le SGBD sépare la structure de la requéte des données, empéchant I'injection.

ersité’s

89/101

Sécurisation
000000000000000000000e00000000000

Protection contre les attaques par force brute

@ Attaque par force brute :
o Tentatives répétées de connexion avec différents mots de passe,
o Cible les comptes aux mots de passe faibles.

@ Mesures de protection :

Mots de passe forts et complexes,

Limitation du nombre de tentatives (fail2ban),

Acceés restreint par IP (pare-feu, pg_hba.conf),

Désactivation des comptes par défaut (root, admin),

Authentification & deux facteurs (si supportée),

Surveillance des logs d’authentification.

LISV UVsQ®

90/101

Sécurisation
0000000000000000000000e0000000000

Fail2ban pour SGBD

@ Fadil2ban : outil de protection contre les attaques par force brute

@ Installation :

sudo apt install failZ2ban -y

@ Configuration pour MariaDB :
o Créer /etc/fail2ban/jail.d/mariadb.conf,
@ Surveiller /var/log/mysal/error.log,
@ Bannir aprés X tentatives échouées.
@ Configuration pour PostgreSQlL :
@ Surveiller /var/log/postgresql/postgresgl-*.log,
o Détecter "FATAL : password authentication failed".

LISV UvsQm

91/101

Sécurisation
00000000000000000000000e000000000

Exemple de configuration Fail2ban

@ Fichier /etc/fail2ban/jail.d/mariadb.conf :

[mariadb]

enabled = true

port = 3306

filter = mariadb-auth

logpath = /var/log/mysql/error.log
maxretry = 3

bantime = 3600

findtime = 600

@ Redémarrer fail2ban :

sudo systemctl restart failZban

uvsQm
sudo fail2ban-client status mariadb USY C%.

92/101

Sécurisation
000000000000000000000000e00000000

Sécurisation du systéme d’exploitation

@ Le SGBD n’est qu’une couche :

@ Sécuriser aussi I'OS sous-jacent,
@ Un OS compromis = SGBD compromis.
@ Bonnes pratiques OS :
o Mises & jour réguliéres du systéme,
o Désactivation des services inutiles,
@ Configuration SSH sécurisée (clés, pas de root),
@ SELinux ou AppArmor activé,
@ Surveillance des logs systéme,
@ Antivirus/anti-malware si pertinent.

@ Principe :

@ Durcissement du systéme (hardening),
@ Suivre les guides CIS Benchmarks.
o LISV uvsQm

93/101

Sécurisation
000000000000000000000000080000000

Chiffrement des données au repos

@ Chiffrement au repos : protéger les fichiers de données sur le disque
@ Pourquoi?
@ Protection en cas de vol physique du serveur/disque,
@ Conformité réglementaire (RGPD, PCI-DSS),
e Protection contre accés non autorisé aux fichiers.
@ Solutions :
e Chiffrement du systéme de fichiers (LUKS, dm-crypt),
e Chiffrement au niveau SGBD (MariaDB : InnoDB encryption),
e Chiffrement au niveau stockage (SAN, NAS),
o Tablespaces chiffrés (PostgreSQL via extensions).
@ Attention :

e Impact sur les performances,
o Gestion des clés de chiffrement critique. LISV UVsSQ®

94/101

Sécurisation
000000000000000000000000008000000

Chiffrernent au niveau fichiers - LUKS

@ LUKS : Linux Unified Key Setup (chiffrement de partition)
@ Principe :
o Créer une partition chiffrée,

@ Monter le datadir du SGBD sur cette partition,
e Transparent pour le SGBD.

Créer une partition chiffrée (exemple simplifié)
sudo cryptsetup luksFormat /dev/sdbl

sudo cryptsetup luksOpen /dev/sdbl encrypted_data
sudo mkfs.ext4 /dev/mapper/encrypted_data

sudo mount /dev/mapper/encrypted_data /var/lib/mysqgl

Gestion des clés
La clé de déchiffrement doit étre disponible au démarrage ou stockée de maniére sécurisée.

95/101

Sécurisation
000000000000000000000000000800000

Audit de sécurité

@ Audits réguliers :
o Vérifier les configurations de sécurité,
@ Analyser les logs d’acces et d’erreurs,
o Détecter les comportements anormaux,
o Vérifier les privileges utilisateurs.
@ Outils d’audit :
o MySQL Enterprise Audit,
@ MariaDB Audit Plugin,
o pgAudit (PostgreSQL),
@ Scripts personnalisés.
@ Que surveiller?
e Tentatives de connexion échouées,
@ Requétes sensibles (DROP, ALTER, GRANT),
e Accés depuis des IPs inhabituelles, LISV UvsQ®
@ Volumes de données anormaux. 2

96/101

Sécurisation
000000000000000000000000000080000

Activation de |I’audit - MariaDB

@ Installer le plugin d’audit :

INSTALL PLUGIN server_audit
SONAME 'server_audit.so';

@ Configurer dans my.cnf :

[mysqgld]
server_audit_logging=0N
server_audit_events=CONNECT, QUERY, TABLE
server_audit_file_path=/var/log/mysql/audit.log
server_audit_ file rotate size=1000000

@ Redémarrer MariaDB :
LISV UVQ’GN

97/101

sudo systemctl restart mariadb

Sécurisation
000000000000000000000000000008000

Activation de I’audit - PostgreSQL

@ Installer pgAudit :

sudo apt install postgresgl-15-pgaudit

@ Configurer dans postgresql.conf :

shared_preload_libraries = 'pgaudit'
pgaudit.log = 'read,write,ddl’
pgaudit.log_catalog = off
pgaudit.log_parameter = on

@ Activer dans la base :

CREATE EXTENSION pgaudit; LISV UVSQ®

98/101

Sécurisation
000000000000000000000000000000e800

Conformité RGPD

@ RGPD : Reglement Général sur la Protection des Données
@ Obligations pour les SGBD :

Chiffrement des données personnelles,

Tracabilité des acceés et modifications,

Droit & I'effacement (suppression effective),
Limitation de I'accés (principe du moindre privilege),
Notfification en cas de violation de données,
Conservation limitée dans le temps.

@ Mesures techniques :
@ Pseudonymisation et anonymisation,
o Logs d’audit détaillés,
@ Procédures de suppression sécurisée,
@ Sauvegardes chiffrées.
° LISV |UVsQ®

99/101

Sécurisation
0000000000000000000000000000000e0

Checklist de sécurité

v
v
v
v
v
v
v
v
v
v
v
v

Isolation réseau (VLAN, pare-feu)
Chiffrement SSL/TLS activé

Acceés distants sécurisés (VPN, SSH tunnel)
Mots de passe forts pour tous les comptes
Principe du moindre privilege appliqué
Comptes par défaut désactivés ou sécurisés
Fail2ban ou équivalent configuré

Logs d’audit activés

Sauvegardes régulieres et chiffrées

Mises & jour de sécurité appliquées

Surveillance et monitoring actifs
o LISV UVsQE

100/101

Plan de réponse aux incidents

Sécurisation
00000000000000000000000000000000e

Récapitulatif

La sécurité d’un SGBD est multicouche : réseau, chiffrement, authentification, audit.
Isolation réseau : VLAN, pare-feu avec regles strictes.

Chiffrement SSL/TLS : protege les données en transit.

Acceés distants : VPN ou tfunnel SSH recommandés.

Protection contre injections SQL : responsabilité partagée dev/admin.

Fail2ban : protection contre force brute.

Chiffrement au repos : LUKS, chiffrement SGBD natif.

Audit de sécurité : plugins d’audit, analyse des logs.

Conformité RGPD : chiffrement, tfracabilité, droit & I'oubli.

Prochaine séance
Sauvegarde et restauration des données

	Introduction
	Installation
	Gestion utilisateurs
	Sécurisation

