Laboratoire d’ingénierie ..
des systémes de Versailles = |SINIEINIZ S

TP1 - Maintenance Applicative
Analyse préliminaire et Rétroconception

Halim Djerroud

Révision 0.2

Table des matiéres

1 Introduction 3
1.1 Contexte du projet 3
1.2 Objectifs pédagogiques 3
1.3 Compétences VISEES oo 3

2 Partie 1 : Découverte et prise en main du projet 3
2.1 Etape 1.1 : Téléchargement et installation 3
2.2 Etape 1.2 : Exploration de la structure du projet 4
2.3 Etape 1.3 : Compilation et tests 4

3 Partie 2 : La redocumentation 4
3.1 Contexte e 4
3.2 Etape 2.1 : Lecture de la documentation existante 5
3.3 Etape 2.2 : Diagramme de dépendances)

3.3.1 Objectif 5
3.3.2 Méthodologie)
3.3.3 Outils recommandés 5
3.4 Etape 2.3 : Diagramme de composants 6
3.4.1 Objectif 6
3.4.2 Meéthodologie 6
3.5 Etape 2.4 : Diagramme de fonctionnement 6
3.5.1 Objectif 6
3.5.2 Approches possibles 6
3.5.3 Scénarios & documenter L 7
3.6 Etape 2.5 : Documentation technique des fonctions 7
3.6.1 Identification des fonctions principales 7
3.6.2 Format de documentation Lo 7
3.6.3 Utilisation de Doxygen 8
3.7 Etape 2.6 : Analyse des structures de données 8
3.7.1 Objectif 8
3.7.2 Structures & documenter L. 9
3.7.3 Diagramme de classes (préparation pour 'OO) 9
3.8 Etape 2.7 : Identification des algorithmes métiers 9
3.8.1 Objectif 9
3.8.2 Algorithmes a identifier o 10
3.8.3 Format de documentation des algorithmes 10

TABLE DES MATIERES

LISV UVSQE
Laboratoire d’ingénierie ..
des systémes de Versailles = |SINIEINIZ S

4 Livrables attendus
4.1 Format du rapport

4.2 Contenu minimal attendu

4.3 Modalités de rendu

5 Critéres d’évaluation

6 Conseils méthodologiques
6.1 Organisation du travail L Lo
6.2 Méthodologie d’analyse ducode Lo

6.3 Outils recommandés
6.4 Pieges a éviter . .
6.5 Questions fréquentes

7 Ressources complémentaires

7.1 Documentation . .
7.2 Tutoriels vidéo . .
7.3 Livres de référence

11
11
11
12

12

12
12
12
13
13
13

13
13
14
14

LISV UVSQE
Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

1 Introduction

1.1 Contexte du projet

Le projet pixel_tracer est un logiciel de dessin vectoriel écrit en langage C. Il permet de créer
et manipuler des formes géométriques (points, lignes, cercles, polygones, courbes de Bézier) dans un
environnement de dessin en mode texte.

1.2 Objectifs pédagogiques

L’objectif de ce TP est de vous initier aux techniques de rétroconception (reverse engineering) et
de redocumentation d’une application existante. Ces compétences sont essentielles dans le cadre de la
maintenance applicative, qui représente une part importante du travail d’un développeur professionnel.

Ce travail s’inscrit dans le cadre d’une démarche de maintenance applicative en trois phases :

1. Rétroconception : Analyse et documentation du code existant (ce TP)
2. Récupération du modéle de conception : Transformation vers l'orienté objet (TP2)

3. Refactoring : Réécriture en Java avec amélioration du code (TP3)

1.3 Compétences visées

A Pissue de ce TP, vous serez capable de :
— Analyser une base de code existante en C
— Identifier les dépendances entre modules
— Documenter du code de maniére professionnelle
— Utiliser des outils de documentation automatique (Doxygen)
— Produire des diagrammes techniques (UML, flux, architecture)

— Identifier les algorithmes métiers d’une application

2 Partie 1 : Découverte et prise en main du projet

2.1 Etape 1.1 : Téléchargement et installation

1. Rendez-vous a ’adresse suivante :
https://perso.halim.info/iut_25_26/info/maintenance/

2. Téléchargez ’archive du projet pixel_tracer.tar.gz

3. Créez un répertoire de travail dédié a ce projet :

mkdir ~/maintenance_app
cd “/maintenance_app

4. Décompressez |’archive :

tar -xzvf pixel_tracer.tar.gz
cd pixel_tracer

https://perso.halim.info/iut_25_26/info/maintenance/

LISV UVSQE
Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

2.2 Etape 1.2 : Exploration de la structure du projet

2.2 Etape 1.2 : Exploration de la structure du projet

Examinez attentivement la structure du projet et répondez aux questions suivantes dans votre
rapport :
1. Organisation des fichiers :
— Combien de fichiers .c et .h sont présents?
— Quelle est la convention de nommage utilisée ?
— Y a-t-il des sous-répertoires ? Si oui, lesquels et pourquoi ?
2. Fichiers de configuration :
— Identifiez le Makefile. Quelles sont les cibles principales ?
— Y a-t-il un fichier README ou une documentation ?
— Existe-t-il des fichiers de test ?
3. Dépendances externes :
— Quelles bibliothéques externes sont utilisées ?

— Comment sont-elles incluses dans le projet ?

Conseil : Créez un tableau récapitulatif dans votre rapport listant tous les fichiers sources avec
leur réle présumé.

2.3 Etape 1.3 : Compilation et tests
1. Compilez le projet :

make clean
make

2. Si la compilation échoue, documentez les erreurs et les solutions apportées.

3. Testez l'exécutable généré :
./pixel_tracer

4. Explorez les fonctionnalités du programme :
— Essayez de créer différentes formes (points, lignes, cercles, polygones)
— Testez les commandes disponibles
— Manipulez les calques
— Observez ’affichage en mode texte

5. Reéalisez des captures d’écran des différentes fonctionnalités pour votre rapport.
Livrable : Une section dans votre rapport décrivant :

— Les fonctionnalités principales de 'application

— Le mode d’interaction avec l'utilisateur

— Les limites ou bugs éventuels observés

3 Partie 2 : La redocumentation

3.1 Contexte

La redocumentation consiste & analyser le code source existant pour produire une documentation
claire, structurée et professionnelle. Cette étape est cruciale lorsqu’on reprend un projet existant,
surtout s’il est peu ou mal documenté.

LISV UVSQE
Laboratoire d’ingénierie ..
des systéemes de Versailles : universite paris-sacLAY

3.2 Etape 2.1 : Lecture de la documentation existante

3.2 Etape 2.1 : Lecture de la documentation existante

1. Lisez attentivement la documentation existante du projet disponible & :

https://perso.halim.info/iut/info/mantenance/Projet_de_programmation_C_maintenace_
app_IUT__pixel_tracer_-1.pdf

2. Identifiez dans votre rapport :
— Les informations manquantes ou incomplétes
— Les sections obsolétes ou incorrectes
— Les points & clarifier ou a approfondir
3. Prenez des notes sur :
— Les structures de données principales
— Le vocabulaire métier utilisé

— Les conventions de codage

3.3 Etape 2.2 : Diagramme de dépendances
3.3.1 Objectif

Identifier et visualiser les relations d’inclusion entre les fichiers sources du projet.

3.3.2 Meéthodologie

1. Pour chaque fichier .c :

— Listez tous les #include présents

— Distinguez les includes systéme (entre <>) des includes locaux (entre "")
2. Créez une matrice de dépendances ou un graphe orienté montrant :

— Les fichiers sources (.c) en tant que noeuds principaux

— Les fichiers d’en-tétes (.h) en tant que nceuds secondaires

— Les fléches indiquant les dépendances
3. Identifiez :

— Les fichiers centraux (trés inclus)

— Les fichiers périphériques (peu de dépendances)
— Les éventuelles dépendances circulaires (a éviter)

3.3.3 Outils recommandés

Draw.io (https://app.diagrams.net/)
PlantUML

Graphviz
Lucidchart

Exemple de représentation :

main.c --> shape.h
main.c --> layer.h
main.c --> command.h
shape.c --> shape.h
shape.c --> geometry.h

https://perso.halim.info/iut/info/mantenance/Projet_de_programmation_C_maintenace_app_IUT__pixel_tracer_-1.pdf
https://perso.halim.info/iut/info/mantenance/Projet_de_programmation_C_maintenace_app_IUT__pixel_tracer_-1.pdf
https://app.diagrams.net/

(=
[\

Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

3.4 Etape 2.3 : Diagramme de composants

3.4 Etape 2.3 : Diagramme de composants

3.4.1 Objectif

Identifier les modules fonctionnels principaux et leurs interactions.

3.4.2 Meéthodologie

1. Regroupez les fichiers par domaine fonctionnel. Par exemple :

— Module Formes géomeétriques : gestion des shapes
— Module Calques : gestion des layers
— Module Affichage : rendering en mode texte
— Module Commandes : interface utilisateur
— Module Algorithmes : calculs géométriques
2. Pour chaque composant, identifiez :
— Son nom
— Sa responsabilité principale
— Ses interfaces (fonctions publiques)

— Ses dépendances vers d’autres composants
3. Dessinez un diagramme de composants UML montrant :

— Les composants (rectangles)
— Les interfaces fournies et requises

— Les relations entre composants

Livrable : Un diagramme de composants UML avec une légende explicative.

3.5 Etape 2.4 : Diagramme de fonctionnement
3.5.1 Objectif

Comprendre et illustrer le flux d’exécution de 'application.

3.5.2 Approches possibles

Choisissez I'une ou plusieurs des approches suivantes :

1. Diagramme de flux de données :
— Montrez comment les données circulent dans 'application
— De l'entrée utilisateur a l'affichage final
2. Diagramme d’activité UML :
— Illustrez le cycle de vie d'une commande utilisateur
— Montrez les branchements conditionnels

— Indiquez les boucles principales
3. Diagramme de séquence :
— Pour un scénario d’utilisation typique

— Exemple : "Créer un cercle sur un nouveau calque"

LISV UVSQE
Laboratoire d’ingénierie ..
des systéemes de Versailles : universite paris-sacLAY

3.6 Etape 2.5 : Documentation technique des fonctions

3.5.3 Scénarios a documenter

Créez au minimum un diagramme pour chacun des scénarios suivants :
1. Démarrage de I'application

2. Creéation d’une forme géométrique simple (ligne ou cercle)

3. Ajout d’une forme sur un calque

4. Affichage de la scéne compléte

3.6 Etape 2.5 : Documentation technique des fonctions
3.6.1 Identification des fonctions principales

Analysez le code et identifiez au minimum 10 fonctions principales. Critéres de sélection :
— Fonctions exposées dans les fichiers .h (API publique)
— Fonctions appelées fréquemment
— Fonctions complexes ou critiques

— Fonctions métiers essentielles

3.6.2 Format de documentation
Pour chaque fonction, rédigez une fiche technique compléte comprenant :
1. Signature :
type_retour nom_fonction(type paraml, type param2, ...);

2. Description :
— Role de la fonction en 2-3 phrases
— Contexte d’utilisation
3. Parameétres :
— Nom du paramétre
— Type
— Role (que représente ce paramétre 7)
— Contraintes éventuelles (valeurs acceptées, préconditions)
4. Valeur de retour :
— Type de retour
— Signification de la valeur retournée

— Codes d’erreur éventuels
5. Effets de bord :

— Modification de variables globales?
— Allocation/libération mémoire ?

— Interactions avec des ressources externes ?

6. Exemple d’utilisation :

// Ezemple de code montrant l'usage typique

l-l<£;‘“' | E;(:Zggz
Laboratoire d’ingénierie ..
des systémes de Versailles = |SINIEINIZ S

3.7 Etape 2.6 : Analyse des structures de données

3.6.3 Utilisation de Doxygen

Doxygen est un outil de génération automatique de documentation a partir de commentaires struc-
turés dans le code source.
Installation :

sudo apt-get install doxygen graphviz

Format des commentaires Doxygen :

@brief Crée un nouveau point avec les coordonnées spécifiées

Cette fonction alloue dynamiquement la mémoiTe nécessaire
pour créer un nouveau point et initialise ses coordonnées.

@param y Coordonnée y du point (en pizels)
O@return Pointeur vers le point créé, NULL en cas d'échec

Qwarning L'appelant est responsable de libérer la mémoire
Osee delete_point()
*/

Point* create_point(int x, int y);

*
*
*
*
*
* Oparam = Coordonnée z du point (en pizels)
*
*
*
*
*

Génération de la documentation :
1. Créez un fichier de configuration :
doxygen -g Doxyfile
2. Modifiez le Doxyfile (paramétres importants) :
PROJECT_NAME = "Pixel Tracer"
INPUT = ./src
RECURSIVE = YES
EXTRACT_ALL = YES

GENERATE_HTML = YES
GENERATE_LATEX = NO

3. Générez la documentation :
doxygen Doxyfile

4. Consultez la documentation générée dans html/index.html
Livrable :
— Fiches techniques de 10 fonctions principales

— Documentation HTML générée par Doxygen

3.7 Etape 2.6 : Analyse des structures de données
3.7.1 Objectif

Identifier et documenter les structures de données principales utilisées dans ’application.

LISV UVsQ®
Laboratoire d’ingénierie ..
des systéemes de Versailles : universite paris-sacLAY

3.8 Etape 2.7 : Identification des algorithmes métiers

3.7.2 Structures A documenter

Pour chaque structure struct trouvée dans le code :
1. Nom et définition :

typedef struct {
// Définition compléte
} nom_structure;
2. Role : Que représente cette structure ? (entité métier, conteneur, etc.)
3. Champs : Pour chaque champ :
— Nom
— Type
— Signification
— Valeurs possibles/contraintes

4. Relations :

— Cette structure contient-elle d’autres structures ?
— Y a-t-il des pointeurs vers d’autres structures ?
— Représentez ces relations sous forme de diagramme

5. Utilisation :

— Ou et comment cette structure est-elle instanciée 7

— Cycle de vie (création, utilisation, destruction)

3.7.3 Diagramme de classes (préparation pour ’00)
Bien que le code soit en C, créez un diagramme de classes UML montrant les structures comme
des classes :
— Les struct deviennent des classes
— Les champs deviennent des attributs

— Les fonctions opérant sur une structure deviennent des méthodes

Exemple :
S +
| Point |
S +
| - x: int |
| - y: int |
o +

| + create() |
| + move() I
| + display() |

3.8 FEtape 2.7 : Identification des algorithmes métiers
3.8.1 Objectif

Repérer et documenter les algorithmes métiers spécifiques a 'application de dessin vectoriel.

(=
[\

Laboratoire d’ingénierie ..
des systéemes de Versailles : universite paris-sacLAY

3.8 Etape 2.7 : Identification des algorithmes métiers

3.8.2 Algorithmes a identifier

Recherchez et documentez les algorithmes suivants (s’ils existent) :

1. Algorithme de tracé de ligne :
— Est-ce l'algorithme de Bresenham ?
— Comment sont calculés les pixels intermédiaires 7
2. Algorithme de tracé de cercle :
— Algorithme utilisé (Bresenham circulaire, point milieu) ?
— Gestion de la symétrie ?
3. Courbes de Bézier :
— Ordre des courbes (quadratique, cubique) ?
— Meéthode de calcul des points (De Casteljau, polynomiale) ?
4. Remplissage de polygones :
— Algorithme de scan-line ?
— Détection point dans polygone ?
5. Gestion des calques :
— Ordre de superposition
— Algorithme de fusion/compositing
6. Transformations géométriques :
— Rotation, translation, mise & I’échelle
— Utilisation de matrices ?

3.8.3 Format de documentation des algorithmes

Pour chaque algorithme identifié :

1. Nom et référence :
— Nom de l'algorithme
— Référence (article, livre, Wikipedia)
2. Principe :
— Explication en francais du fonctionnement
— Schéma ou pseudo-code si nécessaire
3. Complexité :
— Complexité temporelle (notation Big O)
— Complexité spatiale
4. Implémentation dans le projet :
— Fichier et fonction concernés
— Particularités de 'implémentation

— Points d’amélioration éventuels
5. Tests :

— Comment peut-on vérifier le bon fonctionnement ?

— Cas limites a tester

Important : Ces algorithmes devront étre traduits ligne par ligne en Java lors du TP3 (phase de
refactoring).

10

LISV UVSQE
Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

4 Livrables attendus

4.1 Format du rapport

Le rapport devra étre rédigé en LaTeX ou en Markdown et converti en PDF. Structure recomman-
dée :
1. Page de garde :
— Titre du TP
— Vos noms et prénoms
— Date
— Groupe
2. Sommaire
3. Introduction :
— Contexte
— Objectifs
— Méthodologie adoptée
4. Partie 1 : Prise en main du projet
— Structure du projet
— Compilation et tests
— Fonctionnalités observées
5. Partie 2 : Redocumentation
— Diagramme de dépendances
— Diagramme de composants
— Diagrammes de fonctionnement
— Documentation des fonctions principales
— Analyse des structures de données
— Identification des algorithmes métiers
6. Conclusion :
— Synthése du travail réalisé
— Difficultés rencontrées
— Préparation pour les TP suivants
7. Annexes :

— Code source annoté
— Documentation Doxygen (lien ou extrait)
— Captures d’écran supplémentaires

4.2 Contenu minimal attendu

— 1 diagramme de dépendances entre fichiers sources (clair et lisible)
— 1 diagramme de composants UML identifiant les modules principaux
— 2-3 diagrammes de fonctionnement (flux, activité ou séquence)

— Documentation de 10 fonctions principales (format professionnel)
— Analyse de 5-8 structures de données principales

— Identification de 3-5 algorithmes métiers avec documentation

— Documentation Doxygen générée (HTML, fournie en archive séparée)

11

LISV UVSQ8
Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

4.3 Modalités de rendu

4.3 Modalités de rendu

— Date limite : [A préciser par 'enseignant|
— Format :

— Rapport PDF nommé : TP1_NOM_Prenom. pdf
— Archive contenant : rapport, diagrammes sources, documentation Doxygen
— Nommage de l'archive : TP1_NOM_Prenom.zip

— Plateforme de dépot : [Moodle, email, etc.|

5 Critéres d’évaluation

Critére Points | Détails

Prise en main 2 Compréhension du projet, tests fonction-
nels

Diag. dépendances 2 Exhaustivité, clarté, pertinence

Diag. composants 3 Identification correcte des modules, nota-
tion UML

Diag. fonctionnement 3 Clarté, pertinence des scénarios choisis

Doc. fonctions 4 Qualité, exhaustivité (10 fonctions mini-
mum)

Structures données 2 Analyse compléte, diagramme de classes
Algorithmes métiers 3 Identification, explication, documentation
Qualité rédactionnelle 2 Orthographe, clarté, structure du rapport
Doxygen 2 Configuration correcte, génération réussie
Présentation 2 Mise en page, professionnalisme

Total 25

TABLE 1 — Grille d’évaluation détaillée

6 Conseils méthodologiques

6.1 Organisation du travail

1. Commencez t6t : Ce TP demande du temps d’analyse et de réflexion
2. Travaillez de maniére itérative : Faites plusieurs passes sur le code
3. Prenez des notes : Documentez vos observations au fur et & mesure
4

. Utilisez des outils : Doxygen, draw.io, PlantUML...

6.2 Meéthodologie d’analyse du code
1. Vue d’ensemble d’abord :

— Parcourez rapidement tous les fichiers
— Identifiez les modules principaux
— Comprenez I'architecture générale

2. Analyse détaillée ensuite :

— Etudiez chaque fonction importante

12

LISV UVSQE
Laboratoire d’ingénierie .
des systéemes de Versailles : universite paris-sacLAY

6.3 Outils recommandés

— Tracez les flux d’exécution

— Annotez le code avec des commentaires
3. Synthése et documentation :

— Créez les diagrammes

— Rédigez la documentation

— Vérifiez la cohérence

6.3 Outils recommandés

Outil Usage

Doxygen Génération de documentation
Draw.io / Lucidchart Diagrammes généraux

PlantUML Diagrammes UML

VS Code Editeur de code avec extensions
Graphviz Visualisation de graphes

GitKraken / SourceTree | Visualisation dépendances (optionnel)

TABLE 2 — Outils utiles pour le TP

6.4 Piéges a éviter
— Ne pas se contenter de recopier la documentation existante
— Eviter les diagrammes trop complexes ou illisibles
— Ne pas négliger la qualité rédactionnelle
— Ne pas tout documenter : concentrez-vous sur ’essentiel

— Eviter le code dans le rapport : privilégiez les annexes

6.5 Questions fréquentes

Q : Dois-je documenter toutes les fonctions ?
R : Non, concentrez-vous sur les fonctions principales (minimum 10). Les fonctions auxiliaires ou
triviales peuvent étre omises.

Q : Quel niveau de détail pour les algorithmes ?
R : Suffisant pour qu’un développeur puisse comprendre le principe et éventuellement le réimplémenter.
Incluez le pseudo-code si nécessaire.

Q : Puis-je travailler en bindéme ?
R : |[A préciser par I'enseignant]

Q : Les diagrammes doivent-ils étre créés avec un outil spécifique ?
R : Non, mais ils doivent étre propres et professionnels. Draw.io ou PlantUML sont recommandés.

Q : Comment gérer le code illisible ou mal structuré?
R : Faites de votre mieux pour le comprendre et le documenter. Mentionnez les difficultés rencontrées
dans votre rapport.

7 Ressources complémentaires

7.1 Documentation

— Documentation officielle Doxygen : https://www.doxygen.nl/manual/

13

https://www.doxygen.nl/manual/

Laboratoire d’ingénierie ..
des systéemes de Versailles : universite paris-sacLAY

7.2 Tutoriels vidéo

— UML : https://www.uml-diagrams.org/
— PlantUML : https://plantuml.com/fr/
— Algorithmes graphiques : https://en.wikipedia.org/wiki/Bresenham’s_line_algorithm

7.2 Tutoriels vidéo

— Introduction & Doxygen
— Création de diagrammes UML
— Analyse de code C

7.3 Livres de référence
— Working Effectively with Legacy Code - Michael Feathers

— Code Complete - Steve McConnell
— C(lean Code - Robert C. Martin

Conclusion

Ce TP constitue la premiére étape essentielle de votre projet de maintenance applicative. Une
analyse et une documentation rigoureuses faciliteront grandement les phases suivantes (récupération
du modeéle OO et refactoring en Java).

Prenez le temps de bien comprendre le code existant avant de passer & la suite. La qualité de votre
travail de rétroconception conditionnera la réussite de I’ensemble du projet.

Bon courage et bon travail !

14

https://www.uml-diagrams.org/
https://plantuml.com/fr/
https://en.wikipedia.org/wiki/Bresenham's_line_algorithm

	Introduction
	Contexte du projet
	Objectifs pédagogiques
	Compétences visées

	Partie 1 : Découverte et prise en main du projet
	Étape 1.1 : Téléchargement et installation
	Étape 1.2 : Exploration de la structure du projet
	Étape 1.3 : Compilation et tests

	Partie 2 : La redocumentation
	Contexte
	Étape 2.1 : Lecture de la documentation existante
	Étape 2.2 : Diagramme de dépendances
	Objectif
	Méthodologie
	Outils recommandés

	Étape 2.3 : Diagramme de composants
	Objectif
	Méthodologie

	Étape 2.4 : Diagramme de fonctionnement
	Objectif
	Approches possibles
	Scénarios à documenter

	Étape 2.5 : Documentation technique des fonctions
	Identification des fonctions principales
	Format de documentation
	Utilisation de Doxygen

	Étape 2.6 : Analyse des structures de données
	Objectif
	Structures à documenter
	Diagramme de classes (préparation pour l'OO)

	Étape 2.7 : Identification des algorithmes métiers
	Objectif
	Algorithmes à identifier
	Format de documentation des algorithmes

	Livrables attendus
	Format du rapport
	Contenu minimal attendu
	Modalités de rendu

	Critères d'évaluation
	Conseils méthodologiques
	Organisation du travail
	Méthodologie d'analyse du code
	Outils recommandés
	Pièges à éviter
	Questions fréquentes

	Ressources complémentaires
	Documentation
	Tutoriels vidéo
	Livres de référence

